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SUMMARY

In this report, the new Lagrangian method introduced by Loh and Hui is extended for three-dimensional,

steady supersonic flow computation. The derivation of the conservation form and the solution of the local
Riemann solver using the Godunov and the high-resolution TVD (total variation diminished) schemes is presented.

This new approach is accurate and robust, capable of handling complicated geometry and interactions between

discontinuous waves. Test problems show that the extended Lagrangian method retains all the advantages of the

two-dimensional method (e.g., crisp resolution of a slip-surface (contact discontinuity) and automatic grid gen-

eration). In this report, we also suggest a novel three-dimensional Riemann problem in which interesting and

intricate flow features are present.

INTRODUCTION

It is well known that there are two formulations describing fluid motion: the Eulerian and the Lagrangian.

The inviscid compressible flow, as modeled by the Euler equations of gas dynamics, is of both theoretical and

practical importance. Over the past four decades much progress has been made in its numerical simulation. Par-

ticularly in the 1980's, we witnessed an exhaustive exploration of upwind, monotone schemes, especially with

respect to exact and approximate Riemann Solvers (see extensive review by Roe (ref. 1)). However, much of the

current research, except that on one-dimensional flow, is based on the Eulerian description of fluid motion. In
the 1950's and 1960's, studies of fluid motion based on the conventional Lagrangian description were per-

formed, most notably in the Los Alamos and the Lawrence Livermore National Laboratories. One feature of the
Lagrangian approach is that the computational grid is embedded in the fluid and distorted by its motion. This

approach is limited by its inability to cope with a large distortion of the _id when it becomes tangled and highly

irregular. Thus, a hybrid Lagrangian-Eulerian approach was attempted (Arbitrary Lagrangian Eulerian (ALE) method
(ref. 2)) to recover the grid regularity. Unfortunately, the continuous geometrical interpolation in this hybrid

approach eventually leads to loss of accuracy. As a result, since the late sixties, the Eulerian approach is favored

for its easy control of grid and grid regularity. Even so, the very essence of the Lagrangian approach, that a

computational cell is a fluid particle and remains intact, is missed in the Eulerian method. In the numerical
simulation based on the Eulerian description, a slip-surface (contact discontinuity) that is linearly degenerated, is

increasingly smeared as the solution marches further either in time or in space. The resolution of contact discon-

tinuity in the Eulerian formulation is still a current research topic (e.g., see Harten (ref. 3)).

Recently, based on the concept of "Lagrangian time" introduced by Hui and Van Roessel (ref. 5), Loh

and Hui (ref. 4) derived a new Lagrangian conservation form for the two-dimensional, inviscid compressible

flow governed by Euler equations and successfully demonstrated its capability in supersonic flow computation.

In this new formulation, the Lagrangian time r and the stream function _ replace x and y as the independent

variables and the remapping stage is eliminated. Lob and Hui introduced "geometrical conservation" to over-

come the loss of accuracy in geometrical quantities. In the new Lagrangian formulation, a computational cell is

literally a fluid particle and flow physics is closely followed. As a result, slipline (contact discontinuity) is

crisply resolved, without the need for detection or artificial treatment, and is never further smeared.

*National Research Council--NASA Research Associate.



In thisreport, we fhst extend the new Lagrangian approach of reference 4 to three-dimensional, steady

supersonic flow computation. This is not a trivial extension for the geometry is complicated and the exact
Riemann solution in multidimensions is not yet known. Therefore, we offer an approximate approach to the

Riemann problem of the present Lagrangian formulation. In the next section, starting with the three-dimensional
Eulerian conservation form and with the compatibility equations (the "geometrical conservation laws"), we

introduce the new Lagrangian conservation form for three-dimensional steady flow. We then describe the imple-
mentation of the Godunov and TVD schemes and illustrate the so-called pseudo-three-dimensional Riemann

problem and its solution. Next, we briefly discuss the well-posedness of the Cauehy problem in question. The

we11-posedness (the general CFL condition) controls the stability of the numerical procedure. We show how this

condition is easily met in the present Lagrangian approach. Through several test examples in the section Test

Problems, we demonstrate the robustness and accuracy of the new approach.

THE NEW LAGRANGIAN CONSERVATION FORM FOR THREE-DIMENSIONAL STEADY FLOWS

For any modem shock-capturing scheme, an appropriate conservation form is essential for accuracy. We

begin the derivation of the Lagrangian conservation form with the Eulerian conservation laws written for three-

dimensional steady flows:

c3E + OF + 8G = 0 (1)
0x Oy 0z
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and u, v, and w are the Cartesian components of flow velocity, p is density, and p is pressure of the fluid. The

total enthalpy

1( v 2 )+ _ y= 1.4
H = -_u 2 + + w 2 Y Py

Recently, Loh and Hui (ref. 4) introduced a new Lagrangian conservation form for two-dimensional

steady supersonic flow computation, which is based on the concept of Lagrangian time (refs. 5 and 6). The

Lagrangian time "r is a physical time: the time of motion of each fluid particle along its own streamline. For

each fluid particle following its streamline, the Lagrangian time differs from the physical time t only by a

constant t0,

.r=t+ t0 (2)
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which can be considered the local initial time associated with each fluid particle. In this formulation, T and the

stream function _ replace x and y as the independent variables. A computational cell is literally a fluid particle

and the flow physics is closely followed. The Lagrangian approach possesses many attractive features that are

missed in the Eulerian approach, such as crisp resolution of slipline and automatic grid generation.

To explore a Lagrangian approach for higher dimensions, we extended the new Lagrangian formulation
of reference 4 to a three-dimensional formulation and derived the corresponding conservation form. There are

two types of the Lagrangian conservation form (Hui and Zhao, 1993, SIAM J. Sci. Comput., to be published):

the primary one is based on Lagrangian time r, and the enhanced one is based on the Lagrangian distance ;_, the

distance (arc length) along a streamline. In the presence of strong contact discontinuities (slip-surfaces), the

conservation form performs better in numerical computations and is used in this report.

A three-dimensional, nonconservative Lagrangian formulation of the Euler equations of an inviscid, nonheat-

conducting, perfect gas, obeying the y-law, has been described in references 4 and 5. Here, starting from the

Eulerian conservation form (1), we derive the corresponding new Lagrangian h conservation form with r as an
intermediate variable.

In a three-dimensional steady flow, there are two independent stream functions, say, _ and 11.Each fixed

or q represents a stream surface (fig. l(a)). A fixed pair of _ and q denotes a streamline in the three-dimensional

space. Following the streamline, the Lagrangian time r or the Lagrangian distance 9_uniquely determines the

location of the fluid particle. For example, (r,_,n) can be considered a new set of independent variables that are
now functions of the Cartesian coordinates r = (x,y,z) T (where superscript T denotes transposition). Since equa-

tion (2) holds along a streamline (on which _ and 11 are fixed), the fluid velocity V is

V = (u,v,w) T- dr _ dr (3)
Ot OT

Furthermore, the following Lagrangian quantities are defined as

T (U,V,W) T Or Or= = m S = (X,Y,Z) r=
0¢ on

(4)

These quantities represent the lateral rate of displacement of a fluid particle (or computational cell). The
determinant of the Jacobian J,

O(x,y ,z)] = v"
IJl = y

denotes the volume ratio during the change of independent variables. Subsequently, similar to reference 4,

K=01Jl=0 v

Y

is the mass flux (fig. l(d)).

(5)

(6)
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Note that the following relations are the compatibility conditions between the x-, _-, and wderivatives of

x, y, and z:

c3T c3V

as av (7)
Or On

OT aS

an

Starting with the Eulerian conservation form (1) and equations (3) to (7), the variable transformation

from (x,y,z) to (r,_,rl) achieves the conservation form based on Lagrangian time r. In this r conservation form,

each fluid particle marches forward with the same time step AT according to its own velocity. Across a contact

discontinuity (slip-surface) where flow velocity may be discontinuous, two adjacent fluid particles initially in

physical contact may eventually be separated from each other, rendering it difficult to apply a local Riemann
solver in the Godunov or TVD schemes. A remedy is to keep these two particles marching at the same pace, or

more generally, allow all the fluid particles to march the same distance Ak instead of the same time step AT

along their own streamlines. This idea leads to another new Lagrangian conservation form--the conservation

form based on the Lagrangian distance _.. We present here only a sketch of the necessary steps (see Hui and

Zhao, 1993, SIAM J. Sci. Comput., to be published, for details).

First, we define the Lagrangian distance as

X = i T qdT (Sa)

where the flow speed

q=(u2 + v2 + w2) 1/2

The other independent variables are the same as before:

(Sb)

Let

OX OX

a¢ an

From equation (8), two useful relations can be easily derived:

act = 1 aq al3

a-T q ax
_ 1 aq (9)

q Oq
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Making coordinate transformation from (X,_l,rl 1) to (x,_,q), the Jacobian J1 is

The inverted J1 is

(O'r/OX O_/OX Orl/OX_ (1/q 0 il
Jll 0(X'_l'ql) LOT/On10_]Oql on/onO -_]q 0

Finally, a transformation from (x,y,z) to (X,_l,rll) is achieved through successive coordinate transformations:

(x,y,z) ",-',(r,_,rl) _ (h,_l,rll). The resultant Jacobian J0 is

J0 m

O(x,y ,z)

0(X,_I,n 1) , otis:/l/q 0 v

_ 0(r,_,n) O(x,y,z) = I-a/q 1 our

0(x,_,nl) 0(T,_,n) -f_/q o 1 Y

v,q w,q/= - aulq V- avlq W- aw/qI
I

- f_u/q Y- pv/q Z- f_w/ql
]

Iaverting the Jacobian J0 gives

o(x,g_,nl)

O(x,y,z)

¢. •

C3X]OX O_I/C3x Orll/_X

OXlOy O_l/Oy C3Tll/C3y

OX]OZ O_I]C3Z Orll]OZ

K21 K311

=W

LK13 K23 K33)

(10)

Here, Ki,g(i,j = 1,2,3) are the cofactors of the determinant {J0[" Note also that the determinant

}Jo -IJl_ K
q Pq

Equation (10) provides all the partial derivatives OlOx, OlOy, Ol_z that are needed in converting the Eulerian

conservation form (1) into a new Lagrangian conservation form with ()k,_l,TI1) as the independent variables:

0X K 11 + K21O_'--_ K31



0

_y
+K, 0

0 O K 0
13"_" 23-_" 1 33"_1

After some algebraic manipulation, (1) is transformed into a new Lagrangian X conservation form:

0

OX

g

Ku + pKn

Kv + PK12 +

iKw + PK13

HK

,°1PK2

C3 PK22 ] +

0_1 pK23 [
O/

0

PK31

PK32 = 0

PK33

0

(II)

Note that the first equation of (11) implies K = constant along a streamline and therefore, the fifth equation of

(11) is reduced to

OH
m=0
01"

Moreover, corresponding to equation (4), we define T 1 and S 1 as the line vectors of the Jaeobian J0, that is,

T1 = (U 1,Vl,W1) T

I S1 = (X1,Yl,zl )T

These vectors represent the geometrical deformation of the computational cells (fluid particles). Similar to the

compatibility equations in (7), it can be shown, by using equations (7) and (9), that

OTl _ OVIq

Ox O_

OSl = c3Vlq

OX Oq l

OT 1 OS 1

Oq 1 O_l

(12)

6



By combining (11) and (12) and dropping the subscript 1, we achieve a complete set of the new Lagrangian
conservation form based on the ;k-variable:

oc (13)OE + _OF + _ =0
O7, Oq

where
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0
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The system of Lagrangian conservation form (13) may look overwhelming at first glance and could be

rejected prematurely. However, further examination reveals many simplifications and identities. The first two

equations of (13) simply imply that H = constant and K= constant along a streamline; whereas the last three

equations of (13) (i.e., the third vector equation of (12)) are shown automatically satisfied. For steady supersonic

flows, one need only handle the remaining nine equations to march forward and solve the system. The six

compatibility equations for e6,e7,..., ell (components of E) can be solved straightforwardly, as shown in the

following section, and only the three momentum equations for e3, e4, and e5 require more attention in the

numerical procedure.

APPLICATION OF GODUNOV AND TVD SCHEMES

For a supersonic flow with the overall Mach number M > 1 everywhere in the flow field, the system (13)

is of hyperbolic type. In the past four decades, various numerical methods have been developed to handle the

hyperbolic systems. There is a complete spectrum of shock-capturing, finite difference/finite volume schemes to
solve the hyperbolic system of conservation laws, such as Godunov, flux-splitting, TVD, U'NO, ENO, and other

schemes. In this report, as an early exploration of the new three-dimensional Lagrangian method, we apply the

basic Godunov scheme and then upgrade it to a high-resolution TVD scheme by means of Sweby's flux limiter

(ref. 8).



Applicationof Godunov Scheme

The physical and computational domains in the (X,_,q) space are illustrated, respectively, in figure 1,

parts (a) and (b). A cuboid mesh in the computational domain is used and the computation marches in

Lagrangian distance X. The superscript k refers to the marching step number and the subscripts i and j refer to
the cell number on the distance plane (k-plane with X = constant) (fig. 1(c)). The marching step A_k = _.k+l _ _k

is uniform for all i and j. It may vary with k but is always chosen to satisfy the usual CFL linear stability
condition. The mesh divides the computational domain into cuboid control volumes or cells that are centered at

Ok,_i,qj) in _- and rl-directions and have heights A_i = I_i+F2 - _i-1/'2 and Arlj = rl/+1/2 - qj-1/2 (for all k).

Unless otherwise stated, we use a uniform eel1 width A_ i for all i and Aqj for allj.

In the physical space, a cuboid cell marching in ()_,_,q) space corresponds to a fluid particle marching along

its stream tube with step A_. The fluid particle is bounded by four stream surfaces _ = F,/±II-2 and r ! = q_l/2

around it (fig. l(c)). The _rl-plane in computational space corresponds to the initial surface in the physical

space. Any eurvilinear coordinate mesh on the initial surface can be used as the _q-coordinate mesh and the
initial T and S can be determined as part Of the initial condition. A Solid wall is always a stream surface and

therefore, a coordinate surface.

The finite difference scheme of Godunov (ref. 8) for system (13) is derived by applying the divergence

theorem to the cuboid cell (id,k). The result is

Ek+l = E k AXkIFk+I/2 _k+i/2\ Axk[_k+I/2 _k+I/2

i,j i,j- -_i _ i+I/2,j- lYi-I/2,j]- An'--_L_i,j+I:2- Lfri,j-I/2]

(14)

i = 1,2,...,m j = 1,2,...,n

where the notation for the cell average of any quantity f is

A_ i Arlj "_i-1/2

(15)

and the notation for X average of f is

+ 1/2 _
1/2,j 1 fXXkk+lf(_,_i+l/2,rlj)d)_

AXjc
(16)

_/,j+1/2 1 j_k÷ l
+1/2- z_ k f()_'_i'qj+ll2 )d'A (17)

_k+ 1/2 r_k+ 1/2
In equation (14) the cell-interface fluxes lYi+ll2,j and "i,j+l/2 for the cell (id) should be obtained from

the self-similar solution of a local three-dimensional Riemann problem formed by the average constant state

Qi,j = (u,v,w,p,p)T,j of the cell (i,j) and those of its adjacent cells (fig. 2(a)). Unfortunately, as a result of its
complexity, the exact solution to a general three-dimensional Riemarm problem is not yet available (Chang and

Hsiao (ref. 9)). However, it is known that a monotone difference scheme applied to a general conservation form

converges to the physically relevant entropy-satisfying solution (see Harten et al. (ref 10)). In particular,



Crandall and Majda (reL 11) established the rigorous convergence for dimensional-splitting algorithms when

each step is approximated by a monotone difference scheme (such as the Godunov scheme) for a single conser-

vation law of multidimension. We extended and applied the dimensional splitting in the Godunov scheme for

our hyperbolic system of conservation laws (13).

When applying the dimension-splitting technique in the Godunov scheme for (13), one need only solve

pseudo-three-dimensional Riemann problems formed by two adjacent constant states, say, Q_,j and Qi+Ij instead
of genuine three-dimensional ones (figs. 2(a) and (b)). In fact, a pseudo-three-dimensional Riemann problem is

identical to a two-dimensional problem (ref. 4) except that the direction of the interaction line of the two con-
stant states must be known. An interaction line is the line at which the 2 three-dimensional flows begin to con-

tact and interact with each other. More detail is given about the pseudo-three-dimensional Riemann problem in

the following section. To f'md the direction or the unit vector of the interaction line and solve the corresponding

pseudo-three-dimensional Riemann problem, and for which we are given cells (id') and (i+ ld'), (Q/j, Ti 3, Si,j),

and (Q/+Ij, Ti+Ij, Si+Ij), the following steps are followed (fig. 2(c)):

(1) Calculate the unit normal vectors of the h surface of cells (id) and (i + 1,J):

Ti, j × Si, j

hi, j = ITi, j × Si,jl

Ti+I,j x Si+l,j

ni+l,J = ITi+I, j x Si+l,j I

If the cell is a boundary cell, that is, one or more of its walls is a given solid body surface and interacts with

the solid boundary (fig. 2(d)), we still calculate the unit normal corresponding to the cell (id):

Ti,j × Si,j

ni'j = IT/,) × Si,jl

(2) Calculate m I = nij × ni+l, j, if Iml] < e, where e is a threshold value to avoid possible ill-
conditionedness and filter possible noise; discard the present m 1 and use the one of the previous time step. Then

m 1 is normalized to a unit vector. If a solid wall is present,

m 1 = nwall × hi, j

Here we assume the unit normal vector nwau of the solid body surface is given as a boundary condition. On the

initial surface, m 1 is specified as the unit vector of cell interface lines.

(3) Project the flow velocity vector Vi, j on the plane perpendicular to m I (the interaction plane, fig. 2(e))
to obtain Vb; V b is then normalized to give m2--the second unit vector, which is normal to m 1 as well. Mean-

while, Vi+I, j is projected on the same interaction plane, yielding Vt:

I Vi, j= V b + Vbl
Vi+l, j = V t + Vtl



with

Vbl -- (Vi, j "ml)ml
Vtl = (Vi+I, j • ml)m 1

where the subscripts b and t correspond to bottom and top states (see following section) which are the counter-

parts of right and left states in one-dimensional unsteady flow.

(4) Let m 3 = m 1 x m2, then ml,m2,m 3 form a local right hand Cartesian coordinate system, m 2 and m 3

span the interaction plane, in which we have two constant states:

t Q b = (Ub,Vb,Pb, Oh)r = (lVb1,0,Pi,j, Pi,j)
Qt (ut,vt,pt,Pt)T = (Vt "m2'Vt "m3'Pi+l,j'Pi+l,j)

Then a standard two-dimensional Riemann solver (see next section), can be used to solve for the new Qb, and

Qr If the cell is a boundary cell interacting with the solid boundary, the data of Q = Qt is enough for
computing new Q by means of a standard two-dimensional boundary Riemann solver.

(5) Recover new interface three-dimensional states for the purpose of computing cell interface fluxes:

vk+l/2
i+lr2,: = ubm2 + vbm3 + Vbl

k+112 k+112
Pi+ll2,j = Pb Pi+l/2,j = Ob

The same procedure, steps (1) through (5), should be carried out for all four cell interfaces around the cell (id),

that is, the interfaces (i+1/'2,3_--1/2) (fig. l(c)).

In the first-order Godunov scheme, the cell-average E_id at time step k is considered constant within cell

Fk+ 1/2 " _ k+1/2
(id) and the fluxes i+l/2,j along the interface between cells (id) and (i+l,j') and Id_i,j+ll 2 along the interface

between cells (id) and (ij+l) from step k to step k + 1 are obtained as in equations (16) and (17). Due to the

self-similarity of the solution of the pseudo-three-dimensional Riemann problem, for any components f of fluxes

F and G, equations (16) and (17) can be reduced to

fl k+l/2i+ll2,j = f (rk+l/2' _i+l/2'qj)
(18)

f/k+l/2
,j+I/2= f(Tk+I/2'_i,qj+I/2)

(i9)

From (13), note that f is a simple function of Q, T, and S.

The complete numerical procedure of the Godunov method is summarized as follows:

(1) For initiation, given a three-dimensional flow problem in the Cartesian (x,y,z) space, we choose a

surface F, not itself a stream surface, on which the flow is known (e.g., a given uniform flow), as the initial

surface h = 0 (fig. l(a)). Then a parameterized curvilinear _q-coordinate mesh is laid on F (for instance, _ and

q are equal to the arc length of their corresponding coordinate lines on F) with

10



= _0' _1' _2' .... _m q = 110' 111' 1"i2' "'" "rln

and C0 or n0 coinciding with the solid body surfaces (fig. 1). Therefore, T O and S O as well as the flow variable

Q0 axe known on F as' initial conditions. Then E_/d are known on F as well. In most of the test examples given

in this report_ the uniform free stream is the x-direction, the yz-plane is the initial surface F, and _ and rl are the

respective arc lengths of y- and z-coordinate lines. This results in T O = (0,1,0) T and S O = (0,0,1) T and the aver-

aged E 0 follows from equation (15) straightforwardly.

(2) With all E_j and Q_/j known at step k(k = 0,1,2,...), solve the local pseudo-three-dimensional
Riemann problems (or local boundary Riemann problem) at the cell interfaces and obtain the cell interface flow

v k+l/2 k+1/2 k+l/2 described in the aforementioned context. Then fluxes F
variables: --i_+1/2,_1f2, Pi-+1/21_1/2, and Pi_+1/2,_1/2 as

and G are calculated from equations (18) and (19), or more explicitly, from F and G expressions in (13). In

Tk+l sk+l
order to do so, first update T_/,j and sk d to i,j and i,j :

/ .k+l'_Ui'J [ k(*, k+l12 vk+l/2 )
A3. lV/+I/2,j i-ll2,j[|vk+l/= _k+l = i k

I i,j I "[i,j i,j + -_il_ _,

|w_+l | [.qi+ll2,j qi-lt2,j )

k "J)

(20)

.I)_/t+ 1"_"J [ ,.(.,.k+V2
= AX'_ I vi'j+l:2]yk+l / S k+l = S k

[ i,j I i,j i,j + Arl-/ k+l/2

iz ktl/ "1,, qi,j+ll2
,( ',: )

vk+l/2
- i,j-ll2

k+l/2
qi,j-ll2

(21)

i = 1,2 ..... m j = 1,2,...,m k = 0,1,2 ....

With (U,V,W) r and (X,Y,Z) T from equations (20) and (21), the other components of the interface fluxes F and G

are calculated according to their expressions in (13), by using the known cell-interface flow variables,

$,k+ 1/2 k+ 1/2
i+112,j+_112 and Pi+ll2,j+__ll2"

(3) Use equation (14) to update El, j and advance one step. At this stage, one needs to update only e 3, e 4,

and e5. There is no need to update the constants e l, e 2, el2, el3, and el4; whereas e6, e 7.... , ell, identical to U,

V, W, X, Y, and Z, have been computed in the previous step.

--k+l Qk+l(4) Decode E,i, j to get i,j • For simplicity, all the superscripts and subscripts are dropped off except

those for E. Recall that

K,I=I;w[K,,=I:I ;I
and define

11



-- + g 4-
I

2

Then the pressure p satisfies the quadratic equation

Ap2 + Bp + C=O

It can be shown that A = 1/2 _ 4AC >_0 and the physically appropriate solution for p is

-9+ JS
p-

2A

and the other flow variables are

(22a)

e3 - PKll
U-- "t2--

K

e 4 - PK12 e5 - PK13
W_

K K
(22b)

K

Kll u + Kl2V + K13w )
(22c)

(5) Generate grid points (coordinates of cell centers) along streamlines and complete the procedure of

marching forward by one step:

lu,.j uk+lt
k+l k LA_kk + "i,j I

Xi'j = Xi'j + 2 _qi, j qi, J :

lV k vk+lt
k+l k 1 A_kk i,j + "i,j I

Yi,j = Yi,j + "_ _i,j qi,j )

k+l k

Zi, j = Zi, j +
w'"i+ _i,j I

i= 1,2,...,m j = 1,2,...,n

Step (5) is not a standard Godunov procedure but is unique to the Lagrangian method. By proceeding in this

way, a three-dimensional mesh is automatically generated along the streamlines. Each grid point represents the

center of a fluid particle (a computational cell).

12



Thiscompletes the numerical procedure for one space step. To march forward further, repeat steps (2)

through (5).

In the preceding Godunov procedure, the last three compatibility equations of (13) are simply ignored

since they are already automatically satisfied and do not contribute to the marching forward of E.

Application of TVD Scheme

It is well known that because of the presence of numerical viscosity, the first-order Godunov scheme

strongly smears a discontinuity. To improve accuracy, various efforts have been made in the past decade to

develop high-resolution montonicity-preserving schemes, such as TVD, ENO, and other schemes. Among these,

Sweby's TVD scheme procedure (ref. 7), which adds limited antidiffusive terms to the first-order Gudonov

scheme, is probably most convenient.

With the results from the Godunov scheme, the E vector is upgraded component by component before it

is decoded to give new flow variables Q in the aforementioned Godunov procedure. Following Sweby (ref. 7),

we apply a flux limiter function dpand rewrite (13) in the form

= - -
i,j i,j Ji+I/2,j Ji,j+I/2

-IjA_ - {dp(r;)ai++ll2[AFi+ll2,j]+ _ d_(r;+l)(X;+ll2[AFi+ll2,j]- } (23)

-KAq_Idp(S;)_j+II2[AGi,j+II2]+-dP($j+l)_;+ll2[AGi, j+I/2]- }

where la= d0_k/A_.,_:= A_/C/Arl.,and the superscriptG standsforthenumericalfluxesof Godunov scheme. For
t j

any vectorH thebackward differenceoperatorsare

A__[Hi+II2,j] = Hi+I/2, j - Hi-I/2,j

Aq__[Hi,j+I/2] = Hi, j+I/2 - Hi, j-I�2

The notation associated with the _-fluxes are

AFi+I/2, = F Qi+I, - F i+ll2,j

i+112, = F i+l12,j - F Q

o_i÷ll 2 = l_v 1
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(eQ)i+l, j - (e_)i,

Similarly for the q-fluxes, we have

±
r i =

+ +-1

ai-ll2[A(f _)i-ll2_ t

_i%l/2[A(fQ)i+l12_l

i,j+l/2 = G +1 - G i,j+l/2

i,j+ll2 = G i,j+ll2 - G

,;+,o=1[_" 1a:tdj+ I/2

+ K[A(,g_)i,j+ 1/21+

_j+l/2 [(ea)ik, j+l_ (e_)kJ ]

+
sj

_ + r ) l:r. )+-'-1j- 1/2[A(ga j_ l/2J

Here, e_, f_, and g_ are respectively components of E, F, and G, with Q = 3,4,...,11 as their index number. Note

that because e I = K, e2 = H, el2 = el3 = el4 = 0 are constant for all X along a streamline, the upgrading of the

numerical procedure needs to be done for e3,e4,e5,...,e 11 only. The Van Leer limiter function

=

0 r<O

2r (24)
r>O

r+l

is used throughout this report, because there is no substantial difference in the numerical results between apply-

ing different limiter functions (ref. 12).

When the vector E is upgraded by the high-resolution TVD scheme, one can follow, in sequence, the

same procedure as in the Godunov scheme. The TVD scheme leads to better accuracy in the continuous region

and higher resolution across discontinuities, as shown in the section Test Problems.
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SOLUTION OF THE PSEUDO-THREE-DIMENSIONAL RIEMANN PROBLEM

As a building block, the Riemann problem with its solution play an important role in the Godunov-type

schemes in the numerical solution of inviscid, compressible, perfect gas, flow problems. According to the Godunov

scheme, a three-dimensional Riemann solver is required in our numerical procedure (fig. 2(a)). As previously

mentioned, the exact solution to a general three-dimensional Riemann problem is not yet known. Even if it were

available the procedure would be complicated and inefficient. Chang and Hsiao (ref. 9) offer a detailed descrip-

tion of the complexity of the higher dimensional Riemann problem. A practical remedy is to use dimensional

splitting. The dimension-splitting technique reduces the number of initial constant states from four in the full

three-dimensional Riemann problem to two in the so-called pseudo-three-dimensional Riemann problem (fig. 2(b)).

This replaces the exact, but unavailable, three-dimensional Riemann problem solution with four approximate

ones that are already known. In this section, we will study the pseudo-three-dimensional Riemann problem

(PRP) and its solution.

Given two uniform states Qt (top state) and Qb (bottom state) in a three-dimensional space, we assume
that the two states are separated by a plane and that the direction of the interaction line is known (refer to the

preceding paragraph and figs. (2(b) and (c)). These conditions are satisfied in the aforementioned Godunov
scheme. As in figure 3, we chose the direction of interaction line as the z-direction and the plane that separates

Qt and Qb (separating plane) as the yz-coordinate plane. Thus, we have a Cartesian xyz-coordinate system. In

this system, the Euler equations for three-dimensional steady flow have the form

0(pu) + 0(pv) + 0(pw)= 0
0x 0y 0z

Ou Ou w OU 1 cgpu__+v_+ + --0
Ox Oy Oz 00x

Ov Ov w OV 1 dp (25)uD+v--+ + -0
Ox Oy Oz f_ Oy

Ow Ow Ow 1 dp_u-- + V + w_ + _ - 0

Ox c3y Oz P Oz

Ox[,pv) OY[,ov_ Oz',or)

where u, v, and w are the velocity components in the new Cartesian coordinate system and p and 0 are pressure

and density, respectively. The two given states can be written as
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If

0
= 0 and

Oz
W = constant (26)

equation (25) is reduced to the Euler equations of two-dimensional steady flow:

O(pu) + O(pv) = 0
Ox Oy

vOU mopu_+ + -0
Ox Oy p Ox

(2"0

Ov Ov 10p
U_+V_+

Ox Oy P Oy
wm----0

=0

Consider next the two-dimensional Riemann problem of equation (27) with the initial condition (fig. 3)

QO=[IQ° x > 0

x<0

(28)

where Qo = (u,v,p,p)T Qot = (upvt,Pt" or)T, and Qo = (Ub,Vb,Pb, pb)T This is a standard two-dimensional

Riemann problem and can be solved based on equation (27) and the Rankine-Hugoniot relations by using
Newton's iteration. The solution, denoted by Q0, generally consists of all the elementary waves: the oblique

shock (+), the slipline (0), and the Prandtl-Meyer (-) expansion. Based on Q0, the Riemann solution of equa-

tion (25) is constructed in the following way:

Q _l.

(29)

where xs is the x-coordinate of the slip-surface.

Since OQ/Oz = 0 and wt and wb are given constants, the conditions of equation (26) are satisfied. There-

fore, equation (29) is the solution of equation (26); thus, the name "pseudo-three-dimensional Riemann problem

solution." Physically, Q can be regarded as translating in the z-direction along the upper part (above the
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slip-surface) and the lower part (below the slip-surface) of Q0 at different speeds (wt and Wb) across the slip-

surface. A numerical example will be illustrated in the section Test Problems.

If a solid boundary is present, only one initial state, say, Qt is considered in the pseudo-three-dimensional
Riemann problem (fig. 2(d)). The problem can then be termed a pseudo-three-dimensional boundary Riemann

problem (PBRP). Similar to the preceding procedure, we fwst solve the eorrespondingtwo-dimensional bound-
ary Riemann problem and obtain the solution Q0 = (u,v,p,p)r and let Q = (u,v, wt,p,p) . Q is then the solution of

the pseudo-boundary Riemann problem since equation (26) is satisfied.

In the rest of this section, for completeness, we briefly describe the solution of the two-dimensional Riemann

problem and two-dimensional boundary Riemann problem. The procedure is the same as in reference 4, which

can provide more detail.

As an analogue to the one-dimensional Riemann problem for unsteady flow, the standard Riemann prob-

lem for two-dimensional steady flow is an initial value problem of the system shown in equation (27) with a
discontinuous initial condition of equation (28):

IQt x>OQ = (u'v'P'o)T= Qb x < 0

(30)

where the subscripts t and b denote, respectively, top and bottom states (fig. 3(b)) and are counterparts to the

left and right states in one-dimensional unsteady flow. For brevity, the superscript "0" has been dropped.

The solution of the two-dimensional Riemarm problem is self-similar in the variable y/x and consists of

three types of elementary waves: the oblique shock (+), the Prandtl-Meyer expansion (-), and the slipline (0)

(fig. 3).

Let Q0 = (Uo,vo,Po, Oo)T and Q = (u,v,p,o)Tbe the states across one of the +, -, and 0 elementary waves

and ct = plPo" Then, through any state Qo, with p as a parameter, there are two families of state connecting to

Q0: the compression states (p >__P0, a >--1) and the expansion states (p < P0, 0t < 1). The two families join

smoothly at Q0 and can be regarded as a single family. This makes it possible to apply Newton's iterative pro-
cedure in the solution of the Riemann problem. The central issue in the solution procedure is to find common
values ofp and 0(p*,0*) at the slipline (fig. 4). The following details the solution:

(1) In the p0-plane (fig. 4), there are two curves passing through the two given states Q0 = Qt and

Q0 = Qb" They are, respectively, defined as

0 = =
0t + tan-11 _'-': I

YMt2 - 0t + 1 (Y
+ Dot + y - 1 - 1 P >-Pt (31a)

0t + v(Mt) - v(M) P <- Pt
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and

0 = ¢l'b(p) =

0b - v(Mt) + v(M)

- l|/ P > Pb

I jj - (31b)

P <-Pb

where v(M) is the well-known Prandtl-Meyer function. These curves are shown in figure 4.

(2) The Newton iterative procedure is then employed to find the intersect (p*,0*) of the two curves. The

object function to be driven to zero in the Newton procedure is

y p)= ,l,t(p) - %(p) (32)

and the intersect of the tangent lines passing through Ot and Q# is used as an initial guess to the solution. In

practice, we use numerical derivatives to replace the analytical ones. Usually it takes 2 to 4 iterations to
converge to a tolerance of e < 10-6.

(3) With the slipline values (p*,0*) calculated, we evaluate the new p on either side across the slipline by

the Hugoniot relation,

IPo (¥ + l)ct+ y- _> I

[ 1;(V 1)a + V +

p=

poet lly ct < 1

(33)

then the speed q with the total enthalpy H of the corresponding cell. Finally, the velocity components are

available by

u = q cos 0* and v=q sin 0*
(34)

These newly calculated flow variables u,v,p*, and p represent the state at the slipline. Recall that in our Lagrangian

formulation, a slip-surface coincides with the cell interface (a stream surface); these data are used to calculate
cell interface fluxes as described in the previous section.

At the solid boundary, the flow inclination condition is imposed and one of the curves in the p0-plane,

say, 0 = el'b(p) degenerates to a straight line 0 = 0* = constant parallel to the p-axis (fig. 4). In reference 4, this

particular problem is termed "boundary Riemann problem." The solution of a boundary Riemann problem is
similar to the aforementioned procedure but a different object function is used:

f(P) = _t(P) - 0* or f(p) + _bfp) - 0*

18



At this stage, because of the application of Riemann solution and the Godunov scheme to the new

Lagrangian formulation, the slip surface (contact discontinuity) resolution always remains sharp.

Consider a typical case in which a slip surface exists between two continuous flows and coincides with

the cell interfaces between cells (i + 1j) and (ij), j = 1,2,...,n. Thus,

k k
Pi+l,j = Pi, j

and both _/+lj and V_j are parallel to the cell interfaces, whereas there are jumps in P and the flow speed
q = IV I. In the marching, after interaction of the two flows, since the new cell interface follows exactly the

new slip surface (a stream surface), these relations still hold at the new cell interface. Then the cell interface
_k+l/2

flux lfi+l[2, j on either side of the slip surface is continuous on the same side where it is derived, and still

produces continuous solutions through the Godunov scheme along each side of the slip surface. The pressure is
continuous in the whole region since it is continuous across the slip surface. However, the original discontinu-

ities in p and q across the slip surface will remain because the marching evolution on each side of the slip
surface is continuous. In other words, the slip surface remains sharp during the marching. In a special case in

which both continuous flows are uniform, the flows remain unchanged during marching-forward as seen from

the Godunov scheme.

When the slip surface does not coincide with a cell interface, for example, when it is generated by shock

interaction, the cell through which the true slip surface passes will be considered an intermediate cell in the

captured slip surface. Based on this argument, no more intermediate cells will be generated around the true slip
surface; that is, no further smearing will occur during the marching. Moreover, application of a high-resolution

TVD scheme (such as Sweby's) will help to reduce the number of the intermediate ceils and render a sharper

captured slip surface.

In the new three-dimensional Lagrangian approach, the resolution of slip surface is similar to its two-

dimensional counterpart, as has been described by Hui and Loh (ref. 12). Compared with the ever-smearing and

deteriorating resolution of contact discontinuity in the Eulerian formulation, the new Lagrangian approach

provides an excellent means to attack the problem of slip surface resolution.

WELL-POSEDNESS OF THE CAUCHY PROBLEM IN GAS DYNAMICS AND

ITS NUMERICAL TREATMENT

For a supersonic flow of Mach number M > 1 everywhere, the Euler equations of gas dynamics, either in

Eulerian or Lagrangian formulation, are of hyperbolic type. The numerical solution marches forward along a

time-like direction, say, the x-direction in the Eulerian formulation or the flow direction (r or ;k) in the new
Lagrangian formulation. In any case, the well-known CFL condition rules the maximum marching step size

order to maintain stability.

Another important factor that controls the numerical stability is the well-posedness of the Cauchy prob-

lem (initial problem) of the Euler equations. Because the well-posedness can be seen as a general CFL condi-

tion, if it is violated, the numerical procedure will eventually blow up. The property of the new Lagrangian

system (13) in which the physical flow is closely followed makes the well-posedness analysis intuitive and

straightforwardl Consider a computational cell (a fluid particle) in figure 5, where the initial data are given on

the time (distance) surface F. For the well-posedness of this local Cauchy problem of (13), the basic theory of

hyperbolic equation (see Courant and Hilbert (ref. 13)) stipulates that F must lie upstream of the domains of
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influence (i.e., the Mach cones) issuing from every point of F; in particular, those Mach cones issuing from the
vertices of F.

When a supersonic flow passes through a strong shock, similar to the two-dimensional case (tel 12) the
Mach number drops and the Math cones downstream of the shock expand to wider angles, while F changes its

inclination as well. _is is more pronounced in the r-variable form.) It is possible that at some marching step,

the surface F extends into the interior of the Mach cone (fig. 5(b)) and renders the local Cauchy problem ill-

posed. Following the experience from the two-dimensional version (ref. 12), a remedy is to redirect the inclina-

tion (direction of normal vector) of the initial time (distance) surface of each cell so that even after the flow

passes through the shock, the time surface still lies upstream of the Mach cones. Because of the flexibility of

time (distance) surface, the redirection procedure can be performed not only at the initiation stage but also in the

midst of computation without disturbing the formulation and any data already computed.

The same difficulty of well-posedness exists in the Euledan formulation. However, as a result of the fixed

time-like marching direction, say, the x-direction, one has to artificially rotate the reference frame and perform

all the pertinent coordinate transformations. Marconi and Moretti (ref. 14) have used this approach. They

employed a local coordinate rotation to their noneonservative, implicit shock-fitting scheme to assure the proper
domain of dependence of the grid points; thus, supersonic velocity in the marching direction is maintained. For

a conservative shock-capturing scheme, the procedure is expected to be even more cumbersome. In this regard,

the Lagrangian formulation, by simply redirecting the time (distance) surface, is much easier than the Eulerian.

In addition, as in the two-dimensional case (ref. 12), note another advantage of the new Lagrangian form-

ulation over its Eulerian counterpart: the scheme may march forward with a larger Courant number. This situa-

tion is illustrated in figure 5(d), assuming the initial surface coincides with the xy-plane. Because of the

complexity of three-dimensional geometry, we present only a section of the entire configuration. Nevertheless,
the Lagrangian formulation appears to have an _optimal" Courant number since its marching direction (the flow

direction) is fight in the middle of the Mach cones; whereas the maximum Eulerian marching step in the fixed

x-direction does not exceed the intersection of the Eulefian cell interface with any Mach wave.

TEST PROBLEMS

To test the accuracy and robustness of the new three-dimensional Lagrangian method, we applied it to
several test examples and compared the results to the exact solutions, existing numerical solutions, or experi-

mental results (when available).

The first example is a pseudo-three-dimensional Riemann problem. Two flows with states Q1 and Q2 as

described in figure 6 are separated by the separating plane and begin to interact with each other at the inter-

acting line (fig. 6(a)). The problem is analyzed in the section Solution of the Pseudo-Three-Dimensional

Riemann Problem and the exact solution can be easily obtained by using a standard two-dimensional Riemann

solver. In figure 6, parts Co) and (c), we illustrate the pressure and density distributions along a time surface in

the xy-plane (interaction plane). Both numerical results by the Godunov and TVD schemes agree well with the
exact solution. In particular, the slipiine resolution is so crisp that there is practically no point in between. The

TVD scheme produces more accurate results in the continuous part of the flow and a sharper profle across the

shock. In this example, a mesh of 100×50 cells (in the yz-plane) and the a" conservation form (10) are employed.

In the second example, we consider a truly three-dimensional, initial value-boundary value problem--the

supersonic inviscid comer flow. The geometrical configuration is shown in figure 7(a). Two intersecting wedges,
both with angles of 9.5 °, form an axial comer over which there is a Mach 3 flow. The flow field consists of two

planar wedge shocks, two embedded shocks, a comer shock, and the shear layers (slip-surfaces) as shown in
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figure 7. West and Korkegi (ref. 15) carried out an experiment for this case, which we will use as a comparison
with our numerical results. In their experiment, the turbulent boundary layers are thin and the effect on the

shock displacement is minimal. Thus, the overall picture can be considered an inviscid phenomenon, except near

the walls. We employ a mesh of 45x45 points in the yz-plane for the computation. We used the three-

dimensional color-displaying package FAST developed by NASA Ames Research Center for presenting the

numerical results. The color figures are presented here in black and white.

Figure 7(b) illustrates the u-velocity contours on a typical ;_.-plane. The comer shock, embedded shocks,

and two-dimensional wedge shocks are clearly shown. In particular, the triangular slip-surfaces are distinct and

sharp. They all agree well with the experimental locations determined by West and Korkegi (ref. 15). In fig-

ure 7(c), we present the isobars on the same X-plane. All the shocks are still clearly visible. The slip-surfaces

disappear because the pressure across them is continuous. However, a gentle decrease in pressure from the

comer shock toward the walls and the wall comer appears. Figure 7(c) shows the isopycnics (density contours)

on the same X-plane. The density peaks at the two triple points, where the embedded shock, the wedge shock,

and the comer shock meet one another. Figure 7(e) displays how the grid on a typical plane deforms with the

flow; the grid remains straight until the shock is encountered and changes to conform with the deflection of the

streamline. The shock angle agrees well with the exact solution for the two-dimensional wedge shock. Fig-

ure 7(f) shows results by Liou and Hsu (ref. 16), which are based on solving the Navier-Stokes equations with a

very high Reynolds number in the standard Eulerian formulation. A similar mesh of 45x45, but nonuniform,

grid points with finer size at the walls are used in their example. Note that their slip-surfaces are less clear.

In the third problem, we calculate a Mach 4 flow past a delta wing with a 10° angle of attack. In this
case, we intend to show the robustness of our method in handling different body shapes in supersonic flow. The

symmetrical wing body is illustrated in figure 8(a). The semispan angle 8 = 40 °, the semithickness angle dp= 2.5 °,

and its longitudinal cross section is diamond shaped. Initially, the vector T is chosen to be the unit vector along

the projection of wing edge AC on yz-plane. We use the _. conservation form and a 50x50 mesh is employed in

the computation. Figure 8(b) illustrates the isobars at different stations around the wing body; the bow shock at

the top, the expansion fan at the bottom and other expansion fans arising from the central ridge, and the trailing

edge are clearly displayed. Figure 8(c) shows the isobars on the upper wing body surface (a stream surface), the
shock at the leading edge, and the expansions at the central ridge and the trailing edge. The little "zigzags" in

the contours are due to the nonalignment of the vector T with the leading edge or ridge line in each cell. T was

chosen for numerical stability (see Solution of the Pseudo-Three-Dimensional Riemann Problem), and the

unpleasant "zigzags" soon disappear on other stream surfaces. Figure 8, parts (d) and (e) show the isobars on

two typical stream surfaces parallel to, but above and below, the wing body. In figure 8, parts (f') and (g), we

demonstrate the isobars and isopycnics on the symmetric plane. Bow shock, trailing shock, three expansion fans

and, in particular, the slipline are clearly displayed. Evident in figure 8(g), is a very weak wave as a result of

the reflection of the ridge fan from the leading-edge shock. Furthermore, in figure 8, parts (h) and (i), we

present the detailed pressure and density distribution along a typical time line on the symmetric plane to show

the quality of the solution; in particular, a clear discontinuity across the slipline (surface) is shown in figure 8(i).

Finally, figure 8, parts (j) and (k) show the isobars and isopycnics on a typical spanwise cross section parallel to

the symmetric plane. They bear a similarity to those in the symmetric plane.

In the last example, we compute a novel three-dimensional Riemann problem. For many years, the three-

dimensional Riemann problem has been a topic of constant interest and has remained unsolved. To our knowl-

edge, we are the first to calculate the numerical solution for a problem of this type. The capability of our

scheme is based on its excellent behavior across the slip-surface. Having no existing solution for comparison,

we use grid meshes of 50x50 and 100× 100 and confirm that the results are similar. The Riemann problem in

question is shown in figure 9(a) where the initial conditions are given in the four quadrants of the yz-plane. For

better understanding of the flow, we choose identical states in the first and third, and second and fourth

quadrants; that is,
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Q1 = (UpVl,Wl,PPPl)T + (5'0'0'0"25'0"5)r

Q2 = (u2'v2'w2'P2'P2) T = (3.5,0,0, 1, l)T

Figure 9(b) shows the isobars on a typical h plane where the flow is fully developed. The compression, expan-

sion kernels, two-dimensional shocks, and expansion fan regions are clearly observed. Similar to the two-

dimensional case, between a shock and its corresponding region, there exists a region of uniform pressure. The

density contours are presented in figure 9(c). The slip-surfaces are crisp because they are never smeared by the

Lagrangian numerical method. Figure 9(d) demonstrates the contours of u-velocity component. In figure 9, parts

(c) and (d), the slip-surfaces form a pair of curved symmetrical surfaces. In all parts of figure 9, the compres-
sion kernel consists of a singular point that is formed by the collision of two intersecting, two-dimensional

shocks and the quick expansions around it. This simple flow structure strongly contrasts to the structure in the

corner flow (fig. 7). Although formed by two intersecting wedge shocks, the latter is much more complicated as
a result of the Solid walls. Figure 9(e) shows a side view of the solution at one of the outermost stream surfaces.
On this stream surface, the flow is identical to a two-dimensional Riemann problem solution. Figure 9(0 displays

the shape of a slip-surface and several typical meshes. Note that the meshes are automatically deformed,

expanded, or condensed according to the flow. Generally, our result agrees well with the qualitative description

in the paper by Chang and Hsiao (ref. 9).

CONCLUDING REMARKS

In this report, we have developed a new Lagrangian method for steady three-dimensional supersonic flow

computation. The method employs Lagrangian time "r (or Lagrangian distance ;k) and the stream functions as the

independent variables in place of the Cartesian coordinates x, y, and z. The boundary conditions are satisfied
exactly and the method is robust, accurate, and particularly appropriate for complex geometry. The new approach

is superior to the conventional Lagrangian (or Lagrangian-Eulerian) approach because the geometrical quantities

are handled by conservation laws (compatibility equations). Unlike any Eulerian method, the new Lagrangian

approach is characterized by the following features:

1. A computational cell is literally a fluid particle and flow physics is closely followed. The computation

is truly multidimensional rather than the usual one-dimensional splitting.

2. A slip-surface is always crisply resolved without any detection and special treatment since a computa-

tional cell remains identical to the same fluid particle all the time.

3. Grid is automatically generated along the stream tubes as part of the solution. No a priori grid genera-

tion is needed.

4. The inherent parallelism of the Lagrangian approach, that each computational cell can be considered a

fluid particle and a single processor interacting with its surrounding neighbors, lends itself to simple imple-

mentation of massively parallel computation on machines such as the CM-2 to CM-5. (This has been confirmed

by the computations of two-dimensional version (ref. 17).)

In summary, the Lagrangian approach resolves both discontinuities (shocks and slip-surfaces) sharply in

complicated geometry; once combined into massively parallel computation, we believe it will become a

powerful tool for steady supersonic flow computation. Research on the Lagrangian approach to transonic and
subsonic inviscid compressible flows is currently underway.
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